
Experience of Redundant System Simulation
for Evaluation of Timing Characteristics

Alexander Pastsyak, Artem Ozhigin
Corporate Technology, Dependable Systems Group

Siemens LLC
St. Petersburg, Russia

artem.ozhigin@siemens.com, alexander.pastsyak@siemens.com

Abstract — Redundant units are introduced in many systems to
assure continuous system operation in critical situations. When
such unit operates in hot-reserved mode important characteristic
is the time to bring it into normal conditions. This property is
highly affected by the algorithm which manages unit state
switches and its reliable evaluation can only be done when this
logic is designed and implemented. That is why simulation of
system behavior remains the only choice to evaluate timing
characteristics and design decisions before system engineering.
In this paper we present an experience of using discrete-time
event based approach for estimation of performance properties
of a synchronization manager – the component of a larger system
which is responsible for the handling of overall system
redundancy. Results of this work include performance
measurements of different state switching algorithms and
summary of the gained experience.

Keywords — redundant system, descret-time event simulation,
transition time distribution, switching latency.

I. INTRODUCTION
Redundant components are used in many safety-critical

systems to enhance reliability of the whole system. Two
important characteristics need to be considered during design
of such system: time before failure (TBF) for every component
and time to switch to redundant unit in case of failure. The
TBF property is usually affected by hardware design and
operating conditions and can be estimated during early
development phase. On the other hand the second property is
influenced by the logic which defines switch conditions and if
there are restrictions applied to the timing characteristics they
must be taken into account earlier than at implementation
stage. Simulation is a good way to find proper design or
architecture of the system.

In our work we present an experience of using discrete-time
event based simulation approach for estimation of switching
times of Synchronization Manager (SM) – component which is
responsible for redundant operation of a plant control system.
This system consists of two identical units and SM manages
the switches between them in case of failures. The results of
this work include estimation of switching times under several
failure conditions. These estimations have been done with
different algorithms for state switching and simulating
instability of the communication channel. The summary of the
gained experience is also presented.

II. RELATED WORK
Investigation of timing characteristics of redundant systems

has been a topic of interest for a long time and practical results
were received in many disciplines from avionics [6, 7] to
development of dependable web applications [2] and analysis
of fault-tolerant switching in communication networks [8]. For
example, in [1] authors describe the way they used to simulate
redundant firewall system during implementation of ISP cache
server system. They are focused mainly on throughput
characteristics and their dependencies on number of nodes.
They utilize an approach of scaled-down testing using a set of
hardware nodes simulating parts of the system and its
environment (internet, intranet, traffic generation). In order to
evaluate the impact of particular node performance on the
overall system the handicap factor is used in experiments.
Described setup allowed for evaluation of performance impact
of different system parts showing its strengths and weaknesses.

A simulation-based approach to software performance
modeling is presented in [6]. It is based on UML Profile for
Schedulability, Performance and Time Specification and uses
specially annotated use case, activity and deployment diagrams
representing the software architecture to build process-oriented
simulation models. Methodology is illustrated using an
example of web-based video streaming application. Simulation
results are represented as steady-state average delays.

In our work we focus on performance comparison of
different algorithms for state switching of redundant nodes and
analysis of system behavior in case of problems in
communication network between two duplicating components.

III. THE SYSTEM UNDER STUDY
Industrial automation system contains a couple of identical

units working in hot-reserve mode. It is required to have only
one of the units performing operations at a time while the other
unit is standing by. SM is a part of unit’s software responsible
for coordination of units to assure correct selection of active
unit and appropriate role switch in case of failure. SM
consumes information about unit’s external environment and
internal status, besides that redundant communication
(Ethernet-based) is established between a pair of units for SMs
to coordinate state switches (link status is diagnosed and used
as input as well). In case of redundant link malfunction SM is
capable of using Application Network for negotiations with

counterpart to some limited extents. Main decision mechanism
of an SM is designed as a state machine. The entire set of states
can be divided in two subsets: active states, where unit is
performing its operations actively and inactive states, where
unit is working as a hot reserve.

Figure 1. Structure of the redundant system

There are the following active states:

1) SINGLE – unit is active and considers the second unit
as inept to become active (either due to a known failure of the
second unit or absence of information about the second unit).

2) MASTER – unit is active and considers the second unit
as capable to become active.

And the following inactive states:

1) SLAVE – unit is inactive but capable to take over the
active state.

2) FAIL – unit is inactive and inept to become active due
to detected failure(s).

3) CONNECTING – unit is inactive since its role is being
negotiated with the counterpart.

SMs states and related transitions are shown in
Figure 2. Transitions are triggered by the state vector which
includes the following parameters (all of the parameters are
boolean values): APP – state of the main application, RLS –
state of the redundant link between two SMs, RSM – state of
the remote SM (this byte equals 1 if the remote SM in states
MASTER or SINGLE and 0 otherwise) and RL – state of the
reserved link.

Figure 2. States and transitions of SM. Vector parameters are:
 APP- application state, RLS – redundant link state, RSM – state of the remote

SM, RL – state of the reserved link, ‘z’ means ‘any value’.

According to current state SM controls the main service
part of units software. For a pair of SMs there were identified
the sate combinations which are valid and invalid in terms of
operation consistency. E.g. cases when one SM is active
(MASTER) and another is inactive (SLAVE) is valid; while
any case when both SMs are active is invalid. Detailed list of
possible state combinations is presented in Table 1.

TABLE I. STATE COMBINATIONS FOR TWO SMS

 FAIL CONN. M. SLAVE SINGLE

FAIL T T T T V

CONN. T T T T V

MASTER T T F V F

SLAVE T T V T T

SINGLE T T F T F

V – Valid state combination, F – Forbidden state combination, T – acceptable as transitional only.

SM analyzes input information every 300 ms and makes the
decision either to change its state or not. Every decided state
transition is negotiated with the counterpart through redundant
Ethernet link to assure consistent behavior of the units. When
this link is unavailable the negotiation is handled over the
application network link. During normal operation one of the
units stands in the MASTER state while another one in the
SLAVE state. This work is particularly focused on timing
characteristics of two scenarios:

1) Detected failure of active unit (MASTER). This failure
is causing active unit to switch to inactive mode (FAIL) and its
counterpart (SLAVE) to become active (SINGLE). Transitions
happening in this situatioin are shown in Figure 3a (This
scenario is called MasterFailure).

2) Persistent failure of communication channel between
units. This failure is causing active unit (MASTER) to switch
to (SINGLE) and its counterpart (SLAVE) to switch to
negotiation mode (CONNECTING) in order to be ready for
re-synchronization in case of link recovery, see transitions in
Figure 3b. (This scenario is called LinkFailure).

Figure 3. Transitions, which occure during failure conditions.
 a) MasterFailure, b) LinkFailure

For every situation two different time characteristics where
analyzed:

1) Distribution of the transition time in case of ideal
communication.

2) System stability in case of lost packets. System behavior
havily relies on network communication between two SMs
and estimation of the behavior variations in case of problems

in communication is very important. Two particular questions
are the subject of our study:

a) Can the system enter invalid state combination?
(When there is no any MASTER or SINGLE unit, which
means that system can not perform its functions)

b) How is the distribution of transition time affected by
channel instability?

Another topic of this study is the investigation of the
differences between timeout-based and event-based behavior
for state switches. Here the timeout-based algorithm – is the
default algorithm where decision about state transition is made
every 300 ms, while the event-based algorithm – SM algorithm
where the decision about transition is made exactly at the time
when the change in external environment is detected. We were
particularly interested in difference between these two
algorithms for the time transition in case of ideal
communication.

IV. SIMULATION APPROACH
Simulation models can be classified into three subsets with

respect to how they treat system state as a function of time [4].

• Continuous time – system state changes continuously
with time, differential equations are usually used to
describe such models.

• Discrete time – system state is observed only at
selected moments in time which are usually equally
separated.

• Continuous time-discrete event – system behavior is
defined by the sequence of event times which need not
be equally separated. System state may vary
continuously between events but is observed only at
event times.

Since the behavior of our system is fully defined by
external asynchronous events the latter approach is the most
suitable one to build the model. Among available tools we have
chosen discrete-time event based simulator JavaSim [9]. The
choice in favor of this library was determined by its simplicity,
wide provided functionality and extensibility. Analysis of
simulation results includes processing of high volume of
statistical information for system timing properties. To simplify
this process we extended the simulator with JAIDA [10] library
to provide an interface to Java Analysis Studio [11] which is a
powerful tool for data analysis.

Three main processes were defined during simulation: two
identical processes simulated SM behavior and one process
was a control process responsible for managing the external
environment, analysis of SM states, simulation of failures and
gathering of statistical information. In addition to the above
entities separate auxiliary processes were defined to simulate
the external application software and redundant link. All
processes were implemented as Java classes which are
extending SimulationEntity class from JavaSim library.

The whole simulation was handled in a loop which
included the following steps:

• Put both SMs in FAIL state. Before startup one of the
SMs is delayed for some randomly generated timeout.

• Wait while one of the SMs come into MASTER state
and another one into SLAVE state (This is an expected
behavior during normal operation). During operation
SMs send a lot of messages through a communication
link. For simulation of network delays all these
messages were delayed according to the Gaussian
distribution law.

• Simulate failure condition. To introduce stochastic
behavior failures were simulated at arbitarary time
with uniform distribution law.

• Wait while both of the SMs come into expected states,
depending on the failure type. (See Figure 3).

• Save time for transition, reset the processes and repeat
the loop

The loop was repeated 5000 times. The simulation was
done on 2.2 Ghz Core2Duo PC running under Windows XP
operating system.

V. SIMULATION RESULTS
For both failure conditions (MasterFail and LinkFail) we

made five different experiments:

1) Experiment with ideal communication between SMs
with timeout-based algorithm for state switches.

2) Experiments for analysis of system behavior with
timeout-based algorithm for state switches in case of network
problems. To simulate communication instability we
introduced possibility to completely lose network packet.
Three experiments have been done with such probability
equals to 1%, 2% and 3% appropriately.

3) Experiment with ideal communication between SMs
with event-based algorithm for state switches.

The comparison of mean switching times as well as it’s
RMS for all of the above experiments is presented in Table 2.
It can be concluded that: 1) Communication problems affect
system behavior only in MasterFail situation (RMS for
transition time increases in almost 2 times), while for LinkFail
the effect of such instability is less important (RM increases
only at 25 %); 2) Event based algorithm gives significant
advance in transition time and RMS in both cases. Figure 4
shows the difference in transition time distribution for both
failures in case of problems in communication between two
SMs. It can be seen that in the case of LinkFail communication
instability only leads to slightly broader distribution of
transition time without any significant changes in its shape.

However for MasterFail such instability brings completely
new behavior in state transition which leads to cases with
longer transition time (several times longer). It immediately
leads to significant increase of RMS characteristic (indicated
on Table 2) and overall system behavior in this case gets less
predictable. Also communication instability in MasterFail
situation can bring the whole system to the forbidden state (See
the bin near 3000ms in Figure 4.) In this situation both units

reside in SLAVE state and none of them is able to perform
main system functions. Probability of such situation is
estimated as 0.5%. Our model was able to capture this system
behavior because it implemented all the switching logic.

Figure 4. Distribution of transition time in case of
 ideal communication and lost packets

TABLE II. COMPARISON OF MEAN TIMES

 MasterFail LinkFail

Mean
Time
(ms)

RMS
(ms)

Mean
Time
(ms)

RMS
(ms)

Timeout algorithm.
Ideal Communication 207 91 506 101

Timeout algorithm.
Prob. 1% 222 143 505 109

Timeout algorithm.
Prob. 2% 238 175 506 118

Timeout algorithm.
Prob. 3% 245 174 510 126

Event algorithm. Ideal
communication. 70 14 372 38

Figure 5 shows the difference in timeout-based and event-
based algorithms. It can be seen that distribution of a
transition time in the case of event-based algorithm is much

narrower in both cases. Such difference in the behavior can be
explained by the rather large default timeout for timeout-based
algorithm – 300ms, while other system times are much smaller
50 – 100ms. However simple decrease of this timeout looks
rather dangerous and switching to the event-based algorithm is
the most promising way for improvement of system behavior.

Figure 5. Difference in transition time distribution
 in case of timeout-based and event-based DL

VI. CONCLUSION
Experience gained during this project can be summarized as

follows:

• Usage of simulation techniques allows estimation of
relative timing characteristics of a redundant system in
different conditions

• The behavior of a real redundant system is rather
complicated and JavaSim library allowed to reflect
this complexity in the model

• Minor changes in the algorithm responsible for state
transitions may lead to significant variations in time
distribution and overall system behavior. Such changes
in real application need to be reflected in the model
and one of the approaches here – incorporate
appropriate program blocks directly.

VII. FUTURE WORK
The presented study shows time and performance

characteristics of the redundant system under different
conditions. However exact quantitative evaluation of timing
characteristics requires validation of the model on adequacy
with real system that remains a subject for future work.
Another interesting topic is the further investigation of the
differences in behavior of timeout-based and event-based
algorithms under different failure conditions and especially the
data flows which are generated through communication link.

REFERENCES
[1] S. Balsamo, M. Marzolla, “A Simulation-Based Approach to Software

Performance Modelling”, Proceedings of ESEC/FSE 2003
[2] Y. Chen, R. Mateer, “Performance Simulation of a Dependable

Distributied System”, SIMULATION, Vol. 77, No. 5-6, 230-237, 2001

[3] O-J. Dahl, B. Myhrhaug, K. Nygaard, “SIMULA Common Base
Language”, Norwegian Computing Centre, 1970.

[4] I. Mitrani, “Simulation Techniques for Discrete Event Systems”,
Cambridge University Press, Cambridge, 1982

[5] G. D. Parrington et al, “The Design and Implementation of Arjuna”,
Broadcast Project Technical Report, October 1994.

[6] R.Riter, “Modeling and Testing a Critical Fault-Tolerant Multi-Process
System”, Proceedings of the Twenty-Fifth International Symposium on
Fault-Tolerant Computing, 1995

[7] M. Strickland, D. Palumbo., “Fault tolerant system performance
modeling”, NASA Technical Report, 1988

[8] F. Safaei, A. Khonsari, M. Fathy, N. Alzeidi, M.Ould-Khaoua,
“Performance Modeling of Fault-Tolerant Circuit-Switched
Communication Networks”, Parallel Computing in Electrical
Engineering, PAR ELEC ,2006.

[9] JavaSim User’s Guide. Department of Computing Science, Computing
Laboratory, The University, Newcastle upon Tyne, 1999.

[10] JAIDA http://java.freehep.org/jaida/.
[11] Java Analysis Studio http://jas.freehep.org/jas3/.

